- 1. There exists a triangle ABC satisfying the conditions
 - (a) $b \sin A = a, A < \pi/2$

(1986 - 2 Marks)

- (b) $b \sin A > a, A > \pi/2$
- (c) $b \sin A > a, A < \pi/2$
- (d) $b \sin A < a, A < \pi/2, b > a$
- (e) $b \sin A < a, A > \pi/2, b = a$

Solution: -

1. (a, d) We have

$$\frac{\sin A}{a} = \frac{\sin B}{b} \Rightarrow a \sin B = b \sin A$$

- (a) $b \sin A = a \implies a \sin B = a$
- \Rightarrow $\sin B = 1 \Rightarrow B = \pi/2$

Since $A < \pi/2$, the $\triangle ABC$ is possible.

(b) $b \sin A > a \implies a \sin B > a \implies \sin B > 1$

Which is impossible. Hence the possibility (b) is ruled out. Similarly (c) can be shown to be impossible.

(d) $b \sin A < a \Rightarrow a \sin B < a \Rightarrow \sin B < 1$ so value of $\angle B$ exists.

Now, $b > a \implies B > A$. Since $A < \pi/2$

The $\triangle ABC$ is possible when $B > \text{or } < \pi/2$.

- (e) Since b = a, we have B = A. But $A > \pi/2$
- \therefore $B > \pi/2$. But this is not possible for any triangle.